

HARDWARE SECURITY INSIGHT

Texplained

IC REVERSE ENGINEERING & DATA EXTRACTION

Integrated Circuit Reverse Engineering & Data Extraction

Who Am I

- Olivier Thomas:
 - Studied analog micro-electronics design.
 - Worked 8 years in the PayTv field.
 - RE Secure Elements to extract their firmware / data
 - Acquire knowledge used to
 - strengthen new designs
 - use the most efficient counter-measures
 - Founder & CTO of Texplained.
 - Reverse-Engineer motivated by finding new techniques and strategy to uncover secrets from ICs while looking at the constant, mind-blowing evolution of semiconductor and packaging technology.
 - Make IC RE visible and more affordable through better tooling.

INTRODUCTION

Integrated Circuit Reverse Engineering & Data Extraction

Integrated Circuit Reverse-Engineering Use-Cases

This document is confidential

- Integrated Circuits are EVERYWHERE
- They handle sensitive / critical operations •
- They store and use our personal data
- They should be considered as strategic assets
 - Chip global shortage
 - China's wanted independence
 - Taiwanese unsafe situation •

=> A number of risks can be identified from this point!!..

Integrated Circuit Reverse Engineering & Data Extraction

Integrated Circuit Reverse-Engineering Use-Cases

STORAGE DEVICES HAVE BECOME **MORE & MORE ENCRYPTED AND** PROTECTED

MANY UNDOCUMENTED **ELECTRONIC DEVICES ARE NO** LONGER AVAILABLE

MOST OF COMPONENTS ARE MANUFACTURED IN FOREIGN **COUNTRIES**

OFFENSIVE & DEFENSIVE TRADE SECRETS & IPs ANALYSES REQUIRE A HIGH LEVEL OF EXPERTISE

PIRACY PACE IS FASTER THAN SECURITY EVALUATION SCHEMES

This document is confidential

DIGITAL EVIDENCE HAVE BECOME EXTREMELY DIFFICULT TO EXTRACT

A REPLACEMENT INVOLVES A GLOBAL CHANGE OF THE SYSTEM WHICH IS TOO **EXPENSIVE**

MALICIOUS GROUPS MAY HAVE **INTEGRATED TROJANS DURING** MANUFACTURING FOR A LATER REMOTE ATTACK

ANALYZING THE COMPETITORS ICs CAN BE DONE ONLY BY EXPERTS

HARDWARE SECURITY EVALUATION DOES NOT COVER A SUFFICIENT SPECTRUM

Security as a Main Concern for the Semiconductor Industry

Illustration: J. D. King

Source: IEEE Spectrum

This document is confidential

Hardware piracy consists in different types of Abuses:

- Counterfeiting
- Intellectual Property Theft
- Mask, Chip and Circuits theft
- Illegal Copy and Cloning
- Illegal Renovation
- Functionalities modification (unlocking, DRM)
- Trojans Implementation

Context

Devices on the spot

Most known examples of hardware pirated devices includes :

- Pay-Tv
- Video games (cartridges, controllers..)
- Printer Ink Cartridges

This document is confidential

Pay-Tv Pirate Card - Battery Card

Printer Cartridges

Devices on the spot

Gaming console - hardware hacking

- The security of a console as a platform requires that only authorized code be executed on the console.
- Consoles are complex systems and hardware vulnerabilities in the overall architecture are often used to compromise the device.
- The goals for an attacker often include identifying vulnerabilities in low level boot loaders
- Since low level boot loaders may be realized as mask ROMs they cannot be patched
- Although there are "valid" uses, such as homebrew software, piracy is one of the primary drivers on the black market

Devices on the spot

Gaming console - hardware hacking

- Many Modchips existed for the original Xbox.
- The initial hacks are described extensively in bunnie's "Hacking the Xbox".
- This included using an FPGA to eavesdrop on the device's HyperTransport bus.
- Allowed users to replace the 8GB hard drives with much larger drives.
- Eventually mod chips utilized the LPC bus to replace the Xbox firmware.
- Microsoft released several PCB revisions to prevent users from installing mod chips

Figure 1-2: Location of the Xbox case screws. This is a view of the bottom of the Xbox.

Figure 8-1: HyperTransport bus traces as laid out on an Xbox motherboard.

Figure 2-6: Photograph of an Xbox motherboard with the major components labelled.

Context

Secure Microcontrollers

- Although we will cover SoCs as well, secure micro controllers are often the target of attacks in the wild.
- They are self contained systems consisting of a single IC.
- Secure micro controllers integrate a CPU, program memory and storage for sensitive data.
- Secure micro-controllers are available in different form-factors
- Members of a particular product family will share device characteristics.

STM_STM32-F3_STM32f302k8u6_top_10x

Pay-Tv : Integrated Circuits (IC) Hacking

Pay Tv actors always pushed to get the best security possible at a time

~1995

No shield No scrambling Unencrypted

~2000

Passive shield Bus scrambling Encrypted

~2005

Internal Oscillator Active shield Bus scrambling Encrypted Attack Sensors Hardware redundancy Custom hardware function

3 Major Attack Classes

Non Invasive Attacks

- No direct chip access
- Only use external signals
 - Manipulate signal
 - VCC / Clk glitch
 - Listen to signals : Side Channel
 - SPA / DPA

Invasive Attacks

- Access to the chip
- Physical modification allowed
 - Microprobing
 - Reverse-Engineering
 - Counter-Measure bypass

• ...

This document is confidential

The Training

Goal

- IC RE is not impossible and in many cases fairly straightforward
 - Understand digital electronics
 - Understand analysis mindset
 - Understand the time and resources required
 - Understand the equipment:
 - Sample preparation
 - High-Res (Scanning Electron Microscope)
 - Automated analysis techniques

I want to give you an almost exhaustive view on hardware reverse engineering techniques and capabilities

- so you can decide if that is a domain you want to investigate more
- to raise awareness about the associated threats

COURSE SYLABUS

- INTRODUCTION
- **RECOMMENDED READING**
- INTEGRATED CIRCUIT
 - Target Identification
 - Some IC Packages
 - Bonding Wires
 - Structure of an IC

TRANSISTORS

- Physical Construction
- Mode of Operation
- Usage
- CMOS Logic
- Abusing Transistors

• DIGITAL ELECTRONICS

- COMBINATORIAL LOGIC
 - The Inverter
 - Building Truth Tables and Finding the Function • Assignment 1 : Build the Truth Table - Basic

This document is confidential

- Assignment 2 : Build the Truth Table Basic
- Simplifying Boolean Equations
 - Assignment 3 : Build the Truth Table Find the Standard Cell Function
- Sequential Logic Building Blocs
 - Assignment 4 : Draw Complex Standard Cells Find the Standard Cell Function
 - Assignment 5 : Draw Complex Standard Cell from its Function
- **Building Functions**
 - Assignment 6 : Half Adder
 - Assignment 7 : Full Adder
- Cascading
- Datagram
 - Assignment 8 : Build Timing Diagrams

SEQUENTIAL LOGIC

- CPU Architecture Basics
- Registering Data
- Register Transfer Layer • Assignment 9 : Find the Critical Path

MEMORIES

- CPU Architecture Basics
- Memories Architecture
 - Assignment 10 : Build an Address Decoder

COURSE SYLABUS

	 Memory Types Assignment 11 : Extract the ROM bits Assignment 12 : Extract the Scrambled ROM 	
 MA N F N L Q F 	ANUFACTURING PROCESS Manufacturing Steps Planarization Main Processes Layout Stick Diagrams Assignment 13 : Draw Stick Diagrams Finding the Digital Circuit	
 FAI F F F T 	ILURE ANALYSIS Regular Use of FA Equipments FA for Reverse-Engineering The RE Process	
• [DEPROCESSING / DELAYERING Depackaging Cross-sections 	
16	 PRINCIPLE Tilt setup Naming Convention 	,

This document is confidential

- Deprocessing Theory
- WET CHEMICALS
- DRY CHEMICALS
- CMP

• IMAGERY

- Optical Imagery
- SEM Imagery

CIRCUIT MODIFICATION

- Repackaging
- FIB Circuit Edit
- Micro-Probing

INVASIVE ATTACKSFIRST STEP

- Assignment 14 : Process Definition
- Overview Analysis
 - Assignment 15 : Overview Analysis
 - Assignment 16 : Overview Analysis

READING ROM

COURSE SYLABUS

- READING FLASH
 - LINEAR CODE EXTRACTION
 - CPU Architecture Basics
 - LCE Principle
 - Simple LCE
 - Assignment 17: Find Area of Interest
 - Assignment 18 : Picture Analysis
 - Assignment 19: Define the Attack Strategy
 - Using Charge Pump for Reliability
 - Controlled LCE
- INVASIVE ATTACKS INVOLVING REVERSE ENGINEERING
 - REVERSE-ENGINEERING STANDARD CELLS
 - Creating an Attack Scenario Game
 - Assignment 20 : Find a memory extraction spot
 - Assignment 20.1 : RE a standard cell and adapt the attack strategy : SC_1
 - Assignment 20.2 : RE a standard cell and adapt the attack strategy : SC_2
 - Assignment 20.3 : RE a standard cell and adapt the attack strategy : SC_3
 - Assignment 20.4 : RE a standard cell and adapt the attack strategy : SC_4
 - Assignment 20.5 : RE a standard cell and adapt the attack strategy : SC_5

- Assignment 20.6 : RE a standard cell and adapt the attack strategy : SC_6
- Assignment 20.7 : RE a standard cell and adapt the attack strategy : SC_7
- Assignment 21 : Finding weaknesses inside a Standard Cell
- Assignment 21.1 : RE a standard cell and adapt the attack strategy : SC_7'
- Assignment 22 : Is the RAM encrypted?

• SHIELD / MESH

AUTOMATING THE REVERSE ENGINEERING

- Example
- Impact on Common Criteria

RECOMMENDED READING

Hacking the Xbox

- Publisher: No Starch Press
- compromised.

- Available for free as a PDF.

This document is confidential

Author: Andrew "bunnie" Huang

Explains in detail how the Microsoft Xbox was

Describes how to build tools to dump the data from a highspeed interconnect on the Xbox.

Also a great introduction to hardware hacking in general.

CMOS VLSI Design

This document is confidential

- Authors: Neil H.E. Weste & David Money Harris
- Publisher: Addison-Wiley
- Popular in U.S. engineering programs
- Very good overview of basics as well as advanced concepts
- Thorough example of the construction of MIPS CPU

Inside the Machine

ars technica library

Author: Jon Stokes

Publisher: No Starch Press

- - 1.
 - 2.
 - Pipelined Execution 3.
- (PowerPC 970, x86-64, ...)

This document is confidential

The first 3 chapters cover CPU Basics:

Basic Computing Concepts

The Mechanics of Program Execution

And lots of info about modern CPU architectures

Physics of Semiconductor Devices

- Authors: Sze, Ng
- Publisher: Wiley
- Third edition
- semiconductor physics.
- theory to photonic emissions

This document is confidential

One of the most popular university textbooks for

Explains everything starting from basic transistor

Good reference for floating gate technologies

Security Engineering

Security orea Engineering

SECOND EDITION

Ross Anderson

WILEY

A Guide to Building Dependable Distributed Systems

- Author: Ross Anderson
- **Publisher: ASM International**
- Second Edition
- Free to download

This document is confidential

Read just the following chapters:

Chapter 16 "Physical Tamper Resistance"

Chapter 17 "Emission Security"

Microelectronics Failure Analysis

- Editor: Richard J. Ross
- **Publisher: ASM International**
- Sixth Edition

This document is confidential

Good reference for advanced failure analysis (FA) and sample preparation techniques

A collection of academic papers